Reducing greenhouse gas emissions to the atmosphere

Regional Characterisation of a Major Storage System: Gippsland Basin, Southeast Australia

Catherine M. Gibson-Poole^{1,2}, L. Svendsen^{1,2}, J. Underschultz^{1,3}, M. Watson^{1,2}, J. Ennis-King^{1,3}, P. van Ruth^{1,2}, E. Nelson², R. Daniel^{1,2} and Y. Cinar^{1,4}

¹CRC for Greenhouse Gas Technologies ²Australian School of Petroleum, The University of Adelaide ³CSIRO Petroleum ⁴The University of New South Wales

CO2SC 2006 - Berkeley, CA - 20th March 2006

Presentation Outline

- Introduction
- Workflow for detailed site characterisation
- Gippsland Basin, southeast Australia
 - Base regional seal migration pathways
 - Kingfish Field: sequence stratigraphy and depositional model
 - Injectivity: reservoir quality, geometry & connectivity
 - Containment: seal capacity, migration pathways, trap mechanism, geomechanical assessment, hydrodynamic analysis
 - Capacity: 3D geological model & pore volume
 - Numerical flow simulation
- Conclusions

Introduction

Amount of CO₂ geologically stored influenced by:

- Rate of CO₂ migration
- Style of multiphase flow
- Rate of CO₂ dissolution
- Rate of chemical reaction with minerals

Controlled by many variables, including:

- Reservoir and seal structure
- Stratigraphic architecture
- Reservoir heterogeneity
- Faults/fractures
- Pressure/temperature conditions
- Hydrodynamics and chemistry of in situ formation fluids

Site Characterisation Workflow

Gippsland Basin, Southeast Australia

Buoyancy migration pathways at base regional seal

Selected Site Scenarios

Detailed Characterisation: Kingfish Field

Location map of Gippsland Basin

Stratigraphic column

(modified after Power et al., 2001)

(after Bernecker & Partridge, 2001)

Sequence Stratigraphy

Injectivity: Reservoir Quality

Thin section micrograph: Kingfish Fm, nearshore facies

Kingfish Fm

- 15-30 % porosity
- 10-10,000 mD perm
- Good to excellent reservoir quality

Geochemical reactions

- Reservoir units lack minerals reactive to CO₂
- Injectivity unlikely to be compromised

Containment: Seal Capacity (MICP analysis)

Containment: Migration Pathways

Intra-Latrobe Gp

- Stratigraphy dips down to west
- CO₂ will migrate updip to east

Top Latrobe Gp

- Base regional seal dips down to east
- CO₂ will migrate updip to west (towards Bream)

Containment: Migration Pathways Concept

= greater residual gas trapping & dissolution

Containment: Geochemical Trapping

Ideal Reservoir System

Lakes Entrance Fm

- High seal capacity
- Quartz & illitic-smectite
- = limited mineral reactions

Gurnard Fm

- Low permeability
- Calcium, iron & magnesiumbearing minerals
- significant potential for mineral trapping of CO₂

Kingfish Fm

- Moderate to high permeability
- Non-reactive minerals
- = limited mineral reactions

Containment: Geomechanics (2) Fault reactivation potential (dependent $\overline{(3)}$ on amount of pore pressure increase) **Fault orientation** relative to in situ stress orientation -2800 -3000 -3200 -3200 -3400 -3600 -3800

Seismicallyresolvable faults

- 3 cut the top Latrobe unconf.
- 7 terminate within Latrobe Gp
- Most have moderate to high fault reactivation potential
- However, most not in immediate migration pathway

Fault interpretation

Containment: Hydrodynamics

Capacity

CO₂ Storage Capacity

- Available pore volume calculated geologically
- Numerical simulation required to verify pore volume used (sweep efficiency)
- Sweep efficiency dependent on: rate of CO₂ migration, dissolution into formation water, precipitation of new minerals, fill-to-spill structural closures along migration path

Kingfish Field

- Calculated structural closure capacity (existing oil zone) and deeper intra-Latrobe stratigraphy
- Combined capacity > 600 Mt (sufficient for 15 Mt/y for 40 years)
- Intra-Latrobe stratigraphy 3 times the capacity of the structural closure – demonstrates how a deeper injection strategy may provide significantly more CO₂ storage capacity

Numerical Flow Simulation

• 15 Mt/y for 40 years

 Post-injection small shales 0–40 yrs

15 Mt/y for 40 years

 Post-injection small shales 40–400 yrs

Simulation results:

- Injection rate
 achievable lower
 permeability or
 extensive shale
 barriers require
 more wells
- Migration time to the oil-bearing zone is 40-200 years for deep injection – less for shallow injection, more for wider shale barriers
- Storage capacity sufficient with deep injection – more CO₂ trapped as residual gas

- 15 Mt/y for 40 years
- Post-injection small shales 400–1140 yrs

Conclusions

Suitability of Kingfish Field/Gippsland Basin as CO₂ geological storage site:

- Complex stratigraphic architecture which slows vertical migration and increases residual gas trapping
- Non-reactive reservoir units with high injectivity
- Geochemically-reactive, low permeability reservoir just below regional seal to provide additional mineral trapping
- Several depleted oil fields to provide storage capacity coupled with transient flow regime that enhances containment
- Long migration pathways beneath competent regional seal
- Kingfish Field, in conjunction with other sites (e.g. Fortescue, northern gas fields), indicate that Gippsland Basin has sufficient capacity to store very large volumes of CO₂.

Site characterisation for CO₂ geological storage:

- Geological variability requires sites to be independently assessed, although similar workflow can be applied (i.e. injectivity, containment, capacity)
- Best addressed by multidisciplinary approach (i.e. detailed geoscience, engineering, economics and risk assessment) to provide integrated and comprehensive site characterisation

Acknowledgements: CO2CRC Participants

Supporting participants: Australian National University | CANSYD | Meiji University | | The Process Group | University of Queensland | Whistler Research |

